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Abstract—Despite the decades of efforts, indoor position-
ing remains an open research challenge. While existing
solutions already demonstrate high accuracy, their in-
building infrastructure — such as Wi-Fi access points or
Bluetooth beacons — provides only a limited coverage.

This paper investigates feasibility of accurate indoor
positioning using broadcast digital TV signals, readily avail-
able in populated areas worldwide. We experiment with the
classic received signal strength (RSS) fingerprinting, and
introduce a novel approach based on channel state informa-
tion (CSI), which leverages frequency-selective multipath
fading of wideband TV signals. The proposed methods are
experimentally evaluated on an extensive dataset of DVB-T
signals, systematically collected in two large buildings over
the course of 8 months. The results show that the proposed
approach consistently outperforms RSS fingerprinting and
achieves 92–98% localization accuracy.

While this study is based on the European DVB-T
signals, the proposed method is directly generalizable to
other TV standards (such as ATSC, ISDB, DTMB and
DMB) and wide-area TV white space (TVWS) networks.

I. INTRODUCTION

The lack of a globally available indoor positioning
system is one of the key factors that limit the develop-
ment of ubiquitous mobile services. The best candidates
for large-scale indoor positioning — Wi-Fi based sys-
tems — have made a remarkable progress over the last
decade, achieving sub-meter accuracies [1], [2] and min-
imizing the installation efforts with inertial navigation
and crowdsourcing [3], [4]. In turn, dedicated solutions
based on ultrasound [5], [6], ultrawideband radio [7],
[8], visible light [9], [10] and Bluetooth beacons [6],
[11] provide even higher performance.

However, all these systems require dedicated indoor
infrastructure which limits their availability to specific
rooms and buildings. Inertial tracking, in turn, relies on
absolute positioning to reset the accumulating integration
error [3], [4], [12]. Overall, there is a need for a globally
available absolute indoor positioning system.

Ambient indoor localization — or infrastructure-free
indoor localization using ambient radio sources — ad-
dresses this gap. Indeed, broadcast radio signals are
specifically intended for indoor reception, are usually
transmitted with high power and cover most populated
regions across the globe. The approach has already
been demonstrated with FM radio [13]–[17], cellular
networks [18]–[20] and television signals [21]–[23].

TV broadcasts play an important role in the modern
communication landscape [24]. Despite the increasing
popularity of online video streaming, over-the-air TV
provides news and entertainment at a zero cost for
viewers. Moreover, TV and radio are the key chan-
nels for public safety announcements and emergency
updates [25]. As a critical national security resource,
TV broadcasts are remarkably reliable: transmitters are
centralized, have local power backup, are protected from
unauthorized access, and operate in congestion-free li-
censed frequency bands.

In this paper, we investigate feasibility of indoor
positioning using digital TV signals. In contrast to the
previous ranging-based TV localization systems with
poor indoor performance [26], [27], we employ signal
fingerprinting approach which leverages multipath prop-
agation instead of suffering from it. Besides the clas-
sical received signal strength (RSS) fingerprinting, we
introduce a novel method based on lightweight statistical
channel estimation. As a result, channel state information
(CSI) fingerprints provide rich information about radio
propagation environment and receiver position, and thus
enable higher localization performance.

The contribution of this paper is three-fold. First, we
demonstrate feasibility of accurate indoor positioning
using broadcast TV signals. To our knowledge, this is
the first TV-based localization study specifically focused
on indoor scenarios. Second, we introduce an advanced
CSI-based TV positioning approach, which outperforms
RSS fingerprinting and achieves 92–98% localization
accuracy in large-scale testbeds. Finally, we present
a long-term experimental evaluation of the proposed
methods, using real-world DVB-T signals collected in
two large multi-floor buildings over an 8-month period.

II. RELATED WORK

Although ambient indoor positioning is mainly in-
spired by the extensive research on Wi-Fi based localiza-
tion [28], there are a number of fundamental differences
between Wi-Fi and ambient radio broadcasts.

Firstly, before arriving into a building, ambient radio
signals mainly propagate outdoors where they are ex-
posed to external interference, both static (terrain and
buildings) and dynamic: climatic (humidity, precipita-
tion), social (road traffic), and even seasonal changes978-1-5386-3531-5/17/$31.00 c© 2017 IEEE



(foliage, snow cover). Wi-Fi signals, in contrast, prop-
agate for only tens and hundreds of meters, typically
indoors, and are less susceptible to external dynamics.

Secondly, ambient radio broadcasts use substantially
lower frequencies than Wi-Fi’s 2.4 and 5 GHz (with
wavelengths of 0.12 m and 0.06 m, respectively). For
example, European DVB-T broadcasts range from 174 to
862 MHz (1.7 to 0.35 m). The difference in wavelengths
leads to different wave interaction with indoor objects
and building materials [29]. As a result, performance of
a TV-based indoor positioning system cannot be directly
predicted from that of Wi-Fi based solutions.

A number of studies have investigated the feasibility
of indoor localization based on ambient radio signals.

In particular, TV-based positioning systems used sig-
nal propagation time and multilateration approaches. For
instance, Eggert [30] evaluated the time-difference of
arrival (TDOA) method on analogue TV signals, and
reported errors of up to 300 m. A number of studies used
ranging methods based on synchronization subcarriers in
digital TV signals [21], [23], [27], [31]. For Rosum [22],
[23] — one of the first such systems based on the
ATSC standard — the authors reported a “30–50m
indoor accuracy” [26]. A similar performance has also
been demonstrated with DVB-T signals, both in simula-
tions [27], [31] and in outdoor experiments [21]. Overall,
due to the multiple reflections and non-line-of-sight radio
propagation in buildings, the indoor performance of these
TV-based positioning systems was rather poor.

While TV-based systems focused on outdoor scenar-
ios, a number of studies specifically explored indoor
localization, using RSS fingerprinting of narrowband
GSM and FM radio channels. In particular, several
authors reported meter-scale localization accuracies [14],
[15], [20]. A common observation in both GSM and FM
based studies was the significant benefit of additional
signal features, be it advanced physical-level FM prop-
erties [15], or additional GSM carriers [18]–[20].

While additional carriers are beneficial for system
performance, the number of ambient radio channels and
their features is limited: installing another public TV
station would be considerably more difficult than adding
a Wi-Fi access point. However, wideband TV signals
with OFDM (orthogonal frequency-division multiplex-
ing) modulation already include a large number of carri-
ers. For Wi-Fi based systems, information about OFDM
carriers (available from some Wi-Fi modules) resulted
in a breakthrough in localization performance [32]: CSI-
based Wi-Fi positioning systems now achieve sub-meter
accuracies [1], [2], [33]–[36].

In this paper, we combine the rich CSI data from
ambient TV signals and the fingerprinting approach,
well-tailored for multipath scenarios. To the best of
author’s knowledge, this is the first study of TV-based
localization in indoor environments.
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Fig. 1. Spectrum of a real DVB-T signal received indoors, with
frequency-selective fading and narrow-band interference.

III. OUR APPROACH

A. Frequency-selective fading

Our approach is based on the location-sensitive
specifics of radio wave propagation in buildings [29].

During their travel through the environment, radio
waves are reflected and scattered by the surrounding
objects. These reflections — randomly attenuated, de-
layed and arriving from various directions — interfere
with the original wave. This, in turn, creates areas of
constructive and destructive interference. The locations
of these areas are defined by the relative positions of the
obstacles and the transmitter, their properties (such as
dimensions, conductivity, permeability), as well as the
wave frequency.

Frequency dependence of multipath fading is particu-
larly important for wideband signals, as they experience
constructive and destructive interference simultaneously
in different parts of their spectrum (frequency-selective
fading) [37]. For instance, OFDM signals are transmitted
with a flat-top spectrum; however, due to the multipath
fading the received signal’s spectrum is far from flat
(Fig. 1). Moreover, in static environments the spectrum
shape depends mainly on receiver location, as the fading
becomes “a purely spatial phenomenon” [37].

B. CSI estimation

Multipath fading can be described by the CSI vector,
which contains estimated attenuation and phase shift of
the OFDM carriers (the phase shift is not utilized in this
study).

Although CSI estimation is performed internally by
all OFDM receivers for channel equalization purposes,
the resulting CSI values are not exposed to the ap-
plication layer. To overcome this limitation, we used
a software-defined radio (SDR) receiver to collect raw
radio frequency (RF) samples of DVB-T signals, and
then estimated CSI vectors from the power spectra of
the acquired signals.
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Fig. 2. Testbed floorplans and test point locations. (Different floors of each building have similar layouts.)

For this study, we employed a statistical approach for
CSI estimation — a computationally lightweight alter-
native to pilot-based channel estimation methods [38].
In the first step, we average several consecutive OFDM
blocks over a 0.1 s window (similarly to the Bartlett’s
method for estimation of smooth power spectra [39].)
This provides a relatively stable spectral envelope, with
peaks of the continual DVB-T pilots and narrow-band
interference (see Fig. 1); these peaks are removed by
a low-pass filter. Finally, the CSI is estimated by sam-
pling the smooth spectral curve at 32 uniformly spaced
locations.

While dedicated pilot-based methods could provide
more frequent CSI updates [38], [40], our statistical ap-
proach is more robust to narrowband noise and does not
require synchronization. More importantly, our method
directly generalizes to other DTV standards — such
as North American ATSC, South American ISDB, and
Chinese DMB-T — as well as other OFDM signals, in-
cluding IEEE 802.22 TVWS regional area networks [41].

C. Localization method

To leverage the location dependence of the CSI, we
use signal fingerprinting — one of the most widely used
indoor localization methods. This technique includes two
phases. In the initial calibration (training) phase, the
environment is surveyed to build an empirical spatial
model of signal fingerprint distribution. Here, a finger-
print is a vector of CSI or RSS values received from
the stationary TV transmitters. Then, in the localization
phase, the system uses the created empirical model and
machine learning methods to identify locations by their
signal fingerprints.

Before localization, we preprocess the fingerprints in
a two-step procedure. Firstly, CSI vectors of different
channels are merged into one wide fingerprint. Secondly,
fingerprints are standardized by independently centering
and scaling CSI values of each carrier to zero-mean unit-
variance sequences:

x′i =
xi − 〈xi〉
σ[xi]

where xi is a sequence of CSI values in carrier i, while
〈xi〉 and σ[xi] are its mean and standard deviation.
In contrast to simple min/max normalization, statistical
standardization is more robust to occasional outliers.
RSS fingerprints undergo the same preprocessing.

Finally, for learning the signal distribution maps
and recognizing locations by signal fingerprints, we
tested three classifiers from Scikit-learn library [42]:
k-nearest neighbor (kNN), random forest and support
vector machine (SVM). The latter provided the highest
localization accuracy (percentage of correctly recognized
fingerprints) and is used for the rest of the paper.

D. CSI vs. RSS

While RSS is a single-number estimate of the received
signal power, CSI vector provides substantially more
detailed information about signal propagation paths. As
will be shown later, this information proves beneficial
for the localization accuracy.

Moreover, our CSI estimation method exploits only
the shape of the channel profile regardless of its ab-
solute bias (while the RSS describes the bias, but not
the shape). As a result, CSI vectors are invariant to
transmitted signal power and receiver sensitivity (as long
as the signal is above the noise floor). In contrast,
RSS values directly depend on both of these factors
and RSS fingerprinting may require additional device-
specific calibration.

Finally, it should be noted that CSI estimation does
not require decoding of the received DVB-T signals. As
a result, even weak and noisy signals that are unsuitable
for TV-watching purposes can still be used for CSI
estimation and localization.

IV. EXPERIMENT SETUP

To ensure comprehensive evaluation of the proposed
approach, the experimental evaluation was conducted in
two large buildings over several months (see Fig. 2).
One testbed (“Offices”) hosted university administration
and research offices, while the other one (“Campus”)
featured mainly lecture halls and research labs. In each
testbed, we have defined a number of test locations
(test points), aiming at wider coverage of different parts



TABLE I
EXPERIMENTAL TESTBEDS AND SAMPLING CHARACTERISTICS.

Testbed Dimensions Number of test points Sampling period Number of sessions Samples collected

Office Building 100× 50 m 33 + 36 (floors 1 and 0) 9 months (Apr–Dec 2016) 17 1173
Campus Building 80× 80 m 13 + 13 (floors 1 and 0) 8 months (May–Dec 2016) 14 364

of the buildings. To ensure consistent ground truth
throughout the study (and thus accurate performance
evaluation [43]), the test points were defined with about
2 cm precision, using laser rangefinders. Further testbed
details are summarized in Table I.

Acquisition of TV signal samples has been performed
within the scope of a multi-radio ambient localization
project [44], [45], using a dedicated data collection
platform based on a USRP B210 software-defined re-
ceiver. While our setup employs a relatively expensive
and bulky SDR hardware, the CSI estimation method
is hardware-independent and can as well be used with
low-cost consumer SDR receivers (such as RTL-SDR
devices).

At each test point, we recorded 2-second long samples
of raw radio frequency (RF) signals from several radio
bands, including six DVB-T channels. Due to the tuning
and storage delays of multi-band sampling, the dwell
time at each point was about 70 s. The acquired sam-
ples were preprocessed offline using the CSI estimation
method described in Section III-B. This provided twenty
192-element wide CSI fingerprints (6 channels × 32 CSI
elements per channel) for each RF sample. Overall, this
study is based on 31 measurement sessions (1537 point-
samples) from both testbeds.

V. EXPERIMENTAL RESULTS

A. General performance evaluation

In this section we evaluate the general performance
of the system in two extreme cases. In the first scenario,
the system is trained on all but one sessions, and tested
on the remaining single session (“maximal training”);
this provides an optimistic upper-bound performance es-
timate of a well-trained system. In turn, in the “minimal
training” scenario the system is trained on a single
session and tested on the rest of data; this provides a
lower-bound estimate of the localization performance.

Since the experiment involves multiple data sessions,
their results are combined as follows. The evaluation
procedure iterates through all the sessions, picking them
one-by-one as a training (testing) session; at each step,
we calculate error distances for every test fingerprint.
Once evaluation of all the N session combinations is
complete, we merge the N sets of error distances into a
single vector. Finally, the cumulative distribution func-
tion (CDF) of all the error distances represents the
localization performance of the system.
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Fig. 3. Indoor localization performance with TV-based CSI and RSS
fingerprints.

The results are shown in Fig. 3. Both RSS and
CSI fingerprints provided localization performance well
above the random-guess baseline. In the minimal training
scenario, where the system was calibrated only once,
the average RSS-based accuracies were between 27%
and 49% on different floors of the testbeds. In contrast,
CSI fingerprints outperformed RSS-based localization
and provided accuracies of 41% to 61%.

The performance further improved with the additional
calibration in the maximal training scenario: both RSS-
and CSI-based accuracy increased, achieving 47–65%
and 92–98%, respectively. As before, CSI outperformed
RSS-based positioning by a factor of 1.5–2.0 (Campus)
and 2.0–2.1 (Offices). The results demonstrate the high
potential of TV CSI-based localization in comparison to
the classical RSS fingerprinting approach.

B. Performance over time

Since TV signals propagate mainly outdoors, they
are subject to temporal variability caused by external
interference, such as road traffic and weather changes. To
address this, in this section we model a realistic scenario
of incremental training, where the system is calibrated
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Fig. 4. CSI-based localization performance over time, with incremental
training. Numbers in the cells are percents of correctly recognized
fingerprints. Random-guess levels are 3% (Offices) and 8% (Campus).

on several consecutive sessions, and then evaluated over
the following months.

The detailed outcomes of incremental training are
shown in Fig. 4. There, each row represents an evaluation
history of the system trained on several first sessions
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Fig. 5. Impact of incremental training.

and tested on the remaining ones. Towards the bottom
rows, the system has more and more calibration data,
which reduce the number of low-accuracy test sessions
and ensure stable localization performance over time.

Fig. 5 summarizes the impact of incremental training,
showing the average localization accuracy of the system
trained on several data sessions. While the results vary
across the testbeds, the common trend shows a quick
increase of the localization accuracy over the first few
sessions. After about four training sessions (correspond-
ing to a two-month period), the system typically achieved
its highest performance.

Overall, given that the experiments were conducted
in real-world conditions in live buildings, the results
demonstrate the high accuracy and robustness of the
proposed TV CSI-based indoor localization method.

VI. CONCLUSION

The paper presented a novel indoor positioning ap-
proach based on ambient TV signals. The proposed
method leverages frequency-selective multipath fading
of radio signals — a physical phenomenon sensitive to
receiver’s location. We exploit this effect in wideband
digital TV signals using statistical CSI estimation.

The proposed approach has been experimentally eval-
uated on the massive AmbiLoc dataset [44] of real-world
DVB-T signals. The results suggest that TV-based indoor
positioning can provide high accuracy over the long
term. With abundant calibration data, RSS fingerprinting
achieved 47–65% localization accuracy (depending on
testbed), while the proposed CSI-based method improved
the accuracy to 92–98%.

Admittedly, the immediate adoption of the proposed
approach might be somewhat constrained by the cur-
rent lack of TV-enabled mobile devices. However, TV-
capable smartphones are widely popular in Asian coun-
tries, while add-on USB receivers are available for all
major mobile platforms worldwide. Furthermore, the
upcoming ATSC 3.0 standard [46] is specifically de-
signed for mobile TV reception, and is likely to increase
the global availability of TV-capable mobile devices.
In combinations with the high achievable accuracy and
zero infrastructure costs, this makes TV-based indoor
localization a promising direction for further research.
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